Preliminary communication

The reaction of vinyl halides with mercury(II) salts

H. ARZOUMANIAN and J. METZGER

Institut de Pétroléochimie et de Synthèse Organique Industrielle Université de Provence, Traverse de la Barasse, Marseille (13e) (France) (Received June 1st, 1973)

SUMMARY

The reaction of vinyl halides with mercuric salts in water to give the corresponding carbonyl compounds is non-catalytic, and the postulated mechanism includes an oxymercuration-dehalogenation step.

Reactions of transesterification and transetherification of vinyl esters and vinyl ethers catalysed by mercuric salts have been known for a long time 1,2 . The intensive work presently underway on the mechanism of nucleophilic substitution at a vinylic carbon³ brought up a renewed interest, leading to a thorough scrutiny of these reactions^{4,5}.

We wish now to report the results of the closely-related reaction of vinyl halides with mercuric salts which affords the corresponding carbonyl compound according to eqn. (1).

$$\begin{array}{c} X \\ R-CH=CR \end{array} \quad \begin{array}{c} 0 \\ H_2O \end{array} \quad R-CH_2-CR \end{array} \tag{1}$$

X = Cl, Br

A summary of the yields obtained with various olefins and mercury salts is given in Table 1.

This reaction differs from that of simple olefins as it does not constitute a redox. process⁶ since the mercuric species are not reduced. Furthermore, contrary to the mercury(II)-catalysed hydrolysis of isopropenylacetate, the stoichiometry of the reaction

TABLE 1

Vinyl halides	Products	Mercury salts and yields (%) ^a				
		Hg(ClO ₄) ₂	Hg SO4	Hg(NO ₃) ₂	Hg(BF ₄) ₂	
CI I CH ₃ CH=C CH ₃	O ll CH ₃ CH ₂ CCH ₃	71	69	74	67	
Br l CH ₃ CH=C CH ₃	O CH ₃ CH ₂ CCH ₃	50	55	59	51	
Cl I CH ₃ C =CH ₂	О ^{II} CH ₃ CCH ₃	91	93	96	89	

PRODU	CTS FROM	THE REAC	TION OF V	INYL HALIDE	S WITH V	ARIOUS M	ERCURY(II)	SALTS
IN H ₂ C	AT 60°.							

^a By GLPC analysis.

shows clearly its non-catalytic character. In spite of this difference however, a similar oxymercuration-dehalomercuration mechanism can be involved for the reaction of vinyl halides (eqn. 2).

X = Cl, Br $Y = ClO_4, SO_4, NO_3, BF_4$

The non-catalytic character of the process most probably resides in the nature of the eliminated mercuric species(III) which lacks the ability to add to a second molecule of vinyl halide.

This inhibitory role of the halide ion is shown in the hydrolysis reaction of vinyl esters. Thus the mercury(II)-catalysed formation of acetone from isopropenylacetate^{4,5} was greatly slowed down when the reaction was carried out in the presence of sodium chloride. Furthermore, the inability of a ClHg⁺ species to add to an olefin was established when HgCl₂ was found to be inactive towards 2-chloro-2-butene. These results are in agreement with the well-known property of halide ions to shift the equilibrium of oxymercurials towards the free olefin in acidic medium^{7,8}.

These results led us to test the feasibility of the proposed mechanism, involving oxymercuration-deoxymercuration, for the vinyl interchange in mercury(II)-catalysed transesterification and transetherification^{1,2}. According to our observation a distinct catalytic

inhibition should have been obtained with halide ions. Indeed, we found that a typical reaction giving excellent yield of transesterification⁹ gave, in the presence of KCl(Hg²⁺/Cl⁻ = 0.5), but otherwise under identical experimental conditions, only trace amounts of products. This provides additional support to the addition—elimination mechanism and definitely discards the previously suggested¹⁰ path involving an acetylene—mercury complex intermediate, since halomercuric species react readily with alkynes¹¹.

One must point out however that the path shown in eqn. 1 is not unique, as may be concluded from the yields given in Table 1. The intermediate addition product (I) may also undergo an HX elimination to yield a stable β -ketomercurial (IV). This alternative route was tested by reducing the reaction mixture, free of organic products, using basic sodium borohydride. For example, 2-chloro-2-butene reacted with mercuric nitrate to give 70% of methyl ethyl ketone. Distillation of the unreacted olefin and the ketone formed afforded a suspension which, when rendered basic and reduced with sodium borohydride, yielded 15% of 2-butanol.

Further experiments using a wide variety of vinyl halides in various media are in progress in order to identify the proposed intermediates.

REFERENCES

- 1 G. Slinckz and G. Smets, Tetrahedron, 22 (1966) 3162 and refs. therein.
- 2 W.H. Watanabe and L.H. Conlon, J. Amer. Chem. Soc., 75 (1953) 2678.
- 3 G. Modena, Accounts Chem. Res., 4 (1971) 73.
- 4 J.E. Byrd and J. Halpern, Chem. Commun., 20 (1970) 1332.
- 5 P. Abley, J.E. Byrd and J. Halpern, J. Amer. Chem. Soc., 94 (1972) 1985.
- 6 H. Arzoumanian and J. Metzger, Synth., (1971) 527.

C3

- .-

7 W. Kitching, Organometal. Chem. Rev. 3 (1968) 61.

8 W. Kitchin in E.I. Becker and M. Tsutsui (Eds.), Organometallic Reactions, Vol. 3, Wiley-Interscience, New York, 1972, p. 319.

- 9 D. Swern and E.F. Jordan Jr., Org. Synth., 30 (1950) 106.
- 10 R.L. Adelman, J. Amer. Chem. Soc., 75 (1953) 2678.
- 11 H. Arzoumanian, unpublished results.